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Abstract: Perovskite silicon tandem solar cells combine potentially low production costs 
with the ability to surpass the efficiency limit of silicon single junction solar cells. Optical 
modeling and optimization are crucial to achieve this ambitious goal in the near future. The 
optimization should seek to maximize the energy yield based on realistic environmental 
conditions. This work analyzes the energy yield of perovskite silicon tandem solar cells and 
modules based on realistic experimental data, with a special focus on the investigation of 
surface textures at the front and rear side of the solar cell and its implication for reflection as 
well as parasitic absorption properties. The investigation reveals a 7.3%rel higher energy yield 
for an encapsulated tandem cell with a textured front side compared with an encapsulated 
high efficiency single junction solar cell with 24.3% harvesting efficiency for irradiance data 
of the year 2014 in Freiburg/Germany. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Based on the rapid development of hybrid organic-inorganic perovskites as solar cell absorber 
materials, perovskite silicon tandem solar cells have quickly reached the efficiency level of 
silicon single junction devices. The current record value of 28.0% for a two-terminal device 
[1] even overcame the silicon record of 26.7% [2]. Due to the much higher theoretical 
efficiency potential of tandem solar cells, significant further improvements are possible. 

As perovskite silicon tandem solar cells are still in an early stage of development, a large 
variety of device configurations have been investigated over the last years. For a comparison 
of their performance the STC efficiency can be of limited value, because two-terminal tandem 
devices with the need for current-matching are more susceptible to environmental conditions 
that can vary strongly over the year or between different locations. The energy yield takes 
into account parameters like varying spectra, different angles of incidence or temperature. It 
is therefore a much more comprehensive figure of merit than the STC efficiency. Note that 
three- or four-terminal tandem devices might simplify the restrictions due to environmental 
conditions but increase complexity in the module fabrication process. 

Purely theoretical analyses, e.g. based on the Shockley-Queisser-limit are helpful to 
understand the fundamental behavior and estimate the influence of environmental changes 
[3]. However, in order to derive specific recommendations for fabrication, realistic device 
configurations have to be investigated. For this task, optical and electrical device simulations 
are highly valuable. 

The focus topics of most studies are the (i) module configuration, e.g. two-terminal vs. 
four-terminal, (ii) the material choice or (iii) the layer order and thicknesses in the perovskite 
top cell stack. Often a planar layer stack is optimized as top cell with regard to material 
properties and layer thicknesses, sometimes leading to predicted cell efficiencies above 30% 
[4–7]. 
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Among the parameters, which are less often included in simulation studies are (iv) the 
integration of surface textures, (v) effects of the module encapsulation and (vi) a calculation 
of the energy yield including realistic environmental conditions as well as electrical 
properties. 

An extensive study by Hörantner et al. optimized the layer thickness of planar perovskite 
silicon tandem devices considering the electrical properties of the device as well as measured 
irradiance data for different locations [4]. However, neither surface textures nor a module 
encapsulation were taken into account in this study. Jost et al. focus in their yield analysis on 
textured interfaces but take the full module stack with encapsulation only for some of the 
systems into account [8]. Jiang et al. investigate various tandem module configurations and 
point out the importance of the module encapsulation. However, no surface textures are 
included [9]. Van Eerden et al. investigate materials and include also surface roughness in a 
tandem device [10], but without calculating the energy yield. 

Summarizing the available literature, a broad range of module configurations, material 
choices and layer stacks have been investigated. In some cases, surface textures, module 
encapsulation or an energy yield calculation were included. The only study available so far 
combining all aspects (i)-(vi) was performed by Lehr et al. [11]. 

In this work, we investigate the energy yield perovskite silicon two-terminal tandem 
modules, focusing on an optimization of the layer thickness, the introduction of surface 
textures and the calculation of the energy yield. In contrast to the work by Lehr et al. [11] an 
n-i-p configuration is investigated, with the electron contact layer deposited first on the 
silicon solar cell and the hole contact last on the sun-facing side. With this deposition 
sequence, the record efficiencies for single-junction perovskite solar cells have been achieved 
[12] and it is therefore an attractive system for further investigation. As we will see in the 
following, additional optical losses might occur in a tandem configuration. Therefore, further 
optimization is required, for which this paper presents a set of useful tools. 

In sections 2 and 3 an overview of the investigated systems and an introduction to the 
simulation procedure in this work is given. Section 4 shows the simulation results and its 
implications for future development of perovskite silicon tandem modules. 

2. Material choice and system configuration 

The systems that are investigated within this work include realistic monolithic perovskite 
silicon tandem solar cells with textured front or rear side, a 250 µm thick silicon bulk and a 
silver rear reflector, without and with module encapsulation (see Fig. 1). The question 
whether systems with planar front side can perform similarly well as systems with textured 
front is highly relevant for further research as this can make a large difference for the applied 
deposition techniques. 

The perovskite solar cell consists of a layer stack with indium tin oxide (ITO) [13] as 
charge transport material at the bottom and top, TiO2 [14] and C60 [15] as electron contact 
materials, the perovskite absorber and Spiro-OMeTAD [16] as hole contact layer. The 
refractive index data of the perovskite absorber layer for different band gaps was adopted 
from [4]. The data for the silicon bulk was taken from [17] and for the silver reflector from 
[18]. The solar cells without encapsulation feature a magnesium fluoride (MgF2) [19] top 
layer as anti-reflective coating (ARC). The module stack includes a 500 µm thick 
encapsulation made of ethyl vinyl acetate (EVA) using data from [20]. The module front 
features a planar ARC with a wavelength-independent refractive index of 1.27 and a thickness 
of 130 nm. Furthermore, a standard silicon solar cell with textured front and planar rear side 
and 70 nm thick silicon nitride ARC [21] is used as reference. 
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along the energy axis as described in Hörantner et al., who calculated the imaginary part of 

the refractive via 
α λ

   
4π

k
⋅=  and subsequently retrieved the real part of the refractive index n 

using the Kramers-Kronig-relation [4]. 
The optimization of the layer thicknesses of the perovskite cell was performed as 

described in section 3 for bandgaps from 1.55 eV to 1.75 eV and the cell and module stack 
configurations depicted in section 2. The optimal layer thicknesses of top ITO, Spiro 
OMeTAD, C60, TiO2 and bottom ITO converge during the optimization in all cases to their 
predefined minimum thicknesses of 60 nm, 50 nm, 10 nm, 10 nm and 20 nm respectively, due 
to the strong influence of their absorptivity. The optimized perovskite layer thicknesses are 
displayed in Table 1. Note that perovskite thicknesses above 2000 nm seem difficult to 
fabricate experimentally. Therefore, this value was set as maximum within this work. The 
ARC in the non-encapsulated case varies between 90 nm and 122 nm. 

Table 1. Optimized thicknesses [nm] of the perovskite layer for different bandgaps, solar 
cell and module stack configuration 

EGap [eV] Perovskite layer thickness [nm] 
     

 
Cell planar 

front 
Cell textured 

front 
Module stack 
planar front 

Module stack 
textured front 

     
1.55 313 305 317 287 
1.60 428 398 411 373 
1.65 597 591 597 549 
1.70 1428 1477 1461 1290 
1.75 2000 1996 2000 1994 

 

4.2 Optical cell and module performance 

The optical cell and module performance was determined using OPTOS simulations based on 
redistribution matrices for the optimized layer stacks and the silver rear reflector. Within each 
configuration and using the AM1.5g spectrum [26], similar matched photocurrent densities of 
the subcells were achieved for the different bandgaps, e.g. ranging from 17.7 mA/cm2 to 17.8 
mA/cm2 for the module stack with planar front side. The only exception is the bandgap of 
1.75 eV since the maximum perovskite layer thickness of 2000 nm is not large enough to 
reach current matching. In this case the top cell features a photocurrent of 16.7 mA/cm2 while 
the bottom cell reaches 18.8 mA/cm2, which will reduce the monolithic tandem cell 
performance. As the voltage increases with larger bandgaps, the bandgap of 1.70 eV is chosen 
for the following investigation. 

A detailed optical loss analysis of the module configurations with planar and front side 
textured solar cells is shown in Fig. 3. This representation of the optical performance of the 
system reveals two main differences between both systems: 

Integrating a pyramid texture at the front side of the silicon bottom cell reduces the direct 
reflection drastically, and the associated losses in photocurrent decrease from 4.8 mA/cm2 to 
0.8 mA/cm2. The general effect is known from single junction silicon solar cells. However, 
the quantification for this realistic perovskite silicon tandem cell stack is a relevant step. Note 
that direct reflection means light that is reflected before entering the silicon solar cell, while 
escape reflectance means light that travelled at least once through the silicon solar cell, but 
then leaves the solar cell through the front surface. 

The parasitic absorption in the charge carrier transport layers and transparent electrodes is 
already high for the planar front side, e.g. being equivalent to a loss in photocurrent of 1.8 
mA/cm2 in the top ITO. It increases even further for the textured front side to a value of 3.0 
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The J0 values for a bandgap of 1.7 eV were calculated assuming that the difference 
between bandgap energy and Voc stays constant for different bandgaps. For the limited 
bandgap changes within this work this is a good approximation [32]. This consideration leads 
to J02 = 6.225 • 10−10 mA/cm2 for the perovskite solar cell with a bandgap of 1.7 eV. Note that 
the series resistance of a solar cell mainly depends on the front and rear interfaces towards the 
contacts. Since only one of the two metal contacts of each subcell is relevant for a monolithic 
tandem device, the Rs-values of both subcells were divided in half for the energy yield 
calculation. This procedure leads to STC efficiencies of 25.9% and 27.7% for the modules 
featuring tandem cells with planar front and textured front, respectively. The single junction 
module shows an STC efficiency of 25.8%. 

4.5 Energy yield analysis 

All parameters described in the sections above are used as input for YieldOpt 2.0, which 
performs the energy yield analysis. The direct and diffuse incident spectra are multiplied with 
the EQE of the respective incidence angle and integrated to the short circuit current at every 
time step. Note that for the diffuse irradiance, the EQE of 55° incidence is applied [33]. 
Subsequently, the electrical parameters are used to calculate IV-characteristic, the maximum 
power point, the efficiency as well as the power output. Note that effects of varying 
temperature influence both the optical as well as the electrical cell performance but are not 
taken into account here. We focus on the effect of the texturing, different angles of incidence 
and different spectral conditions and assume a constant temperature of 25°C. 

Figure 5(a) shows hourly data of the global irradiance on a module with south orientation 
and a tilt angle of 29° with respect to the average photon energy (APE). The APE is defined 
in Eq. (3) and integrated within this work from 300 nm to 1200 nm. 

 
(λ λ

λ λ

)

( ) λ

I d
APE

q
I d

h c

=
⋅ ⋅




 (3) 

The highest irradiance values appear during the summer months and correspond to 
average photon energies around 1.8 eV, which is also close to the APE of the AM1.5g 
spectrum [26]. This agrees well with the highest efficiencies, which are reached for the same 
APEs, as shown in Fig. 5(b) for the module with the front side textured solar cells. Note that 
the accuracy of irradiance measurement is relatively large for small irradiance values. For 
strongly distorted spectra with very low or very high APE, for which the efficiency of the 
perovskite silicon tandem solar cell drops, coincide with relatively low irradiance, thus the 
impact on the annual energy yield is low. 

As reason for the drop in efficiency towards high and low APEs, an increased current 
mismatch for distorted spectra is assumed. Therefore, the current mismatch is analyzed in 
more detail. Figure 6(a) shows the relative current mismatch RCM, defined in Eq. (4), with 
respect to the global irradiance. RCM can be regarded as the current loss of the tandem device 

due to the current mismatch, ,
2

top botJ J−
 divided by the average of the currents,  .

2
top botJ J+

 

 top bot

top bot

J J
RCM

J J

−
=

+
 (4) 
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produces 7.3%rel more electricity than the module with silicon single junction solar cell (26% 
compared to 24.3% harvesting efficiency). For comparison, the efficiency under standard 
testing conditions was 7.8%rel higher. Hence, almost the complete efficiency advantage of the 
tandem device is translated into a higher energy yield, despite the current matching restriction 
of the monolithic tandem devices. Note that the fill factor of a tandem cell is low at current 
matching conditions and higher in mismatched situations. This is a very important effect for 
yield analyses of tandem solar cells as it reduces the power loss, which would be expected 
based on the mismatched current only. 

The performance ratio, which is defined as the ratio between the annual energy yield and 
the efficiency multiplied by the annual incident energy, expresses the same trend. The module 
with the single junction silicon solar cells has the highest performance ratio of 94.2%, 
because it does not suffer from mismatch losses. However, the tandem module with textured 
front side solar cells features a value of 93.7%, which is very close. 

The module with the front side textured tandem solar cells clearly outperforms the module 
with front side planar tandem solar cells, because of the strong reduction of reflection losses. 
Furthermore, it can make better use of irradiation at shallow angles, as the slightly larger 
difference between the harvesting efficiencies compared to the difference of the STC 
efficiencies shows. The module with planar front side tandem cells even shows a lower 
energy yield than the module with silicon single junction solar cells, despite its 0.1% higher 
efficiency under standard testing conditions. 

Table 3. Energy yield and performance ratio for module stacks with different solar cells 

 
Perovskite silicon 

tandem (planar front) 
Perovskite silicon 

tandem (textured front) 
Silicon single 

junction 
    

STC efficiency 25.9% 27.8% 25.8% 
Annual incident energy 

[kWh/m2] 
1463 1463 1463 

Energy yield [kWh/m2] 347 381 355 
Harvesting efficiency 23.7% 26.0% 24.3% 

Performance ratio 91.6% 93.7% 94.2% 

 
Despite the fact that realistic performance ratios in the field will be lower for all module 

types, as additional factors such as temperature, soiling, placement of the system and also 
losses in the power electronics will be relevant, this analysis demonstrates that solar modules 
with persovskite silicon tandem solar cells can outperform solar modules with single-junction 
high efficiency silicon solar cells. The comparable performance ratios of both module types 
highlight the energy yield potential of perovskite silicon tandem technology. 

5. Conclusion and outlook 

Simulation-based energy yield analyses for perovskite tandem solar cells and modules with 
textured interfaces can take realistic environmental conditions into account and therefore 
guide further developments. This work introduces a simulation scheme to calculate the energy 
yield including complex device configurations with surface structures as well as module 
encapsulation effects. The investigated perovskite silicon tandem modules with front side 
texture show a 7.3%rel higher energy yield compared to an encapsulated high efficiency 
silicon single junction cell for realistic irradiance conditions in Freiburg, Germany. This 
performance could be enhanced significantly by increasing the tandem efficiency, e.g. via less 
parasitic absorption in the charge transfer layers, especially the ITO. Furthermore, an 
optimization of the perovskite layer stack considering the irradiance of the specific location 
might lead to a reduction of the current mismatch and subsequently to a higher energy yield 
as well as performance ratio. A parameter that is not investigated within this work is the 
temperature. It influences the bandgap and thereby both the optical as well as the electrical 
device performance. Therefore, introducing realistic temperature dependence in a yield 

                                                                                      Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS A1428 

 



analysis will be the subject of future work. Also possible performance difference due to 
different spectra for direct and diffuse irradiance need to be further investigated. 
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