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1. Introduction

Since the introduction of the first solar cell in the early 1950s, the
market share of photovoltaic (PV) electricity has expanded expo-
nentially, and it is now the fastest growing source of renewable
energy.[1] PV was quickly embraced as a clean, albeit expensive,
source of energy, yet today it can compete with conventional fos-
sil fuel-based sources purely on economic grounds.[2] In an effort
to drive this advantage even further, many technological

enhancements are being pursued to either
reduce manufacturing costs or increase
the PV cells’ conversion efficiencies.[3]

However, as the focus narrows on cost and
conversion efficiency, awareness has risen
to place equal importance on the potential
environmental trade-offs that technological
innovations in PV may introduce.

Improving efficiency and lowering costs
of PV cells present technology developers
with many technical barriers. Developers
have often addressed these barriers by
incorporating newmaterials andmodifying
cell architectures, spawning numerous
alternative cell designs. Technological
enhancements aim to increase the light-
absorption capacity of the cells, increase
conductivity, or replace existing materials
of the cell for cheaper ones that fulfill the
same function. For example, several thin-
film technologies completely replaced
silicon—a nontoxic and highly abundant
material—while aiming for cost reduc-
tions. Changes in manufacturing methods
may also alter the environmental profile of

the PV industry, as they can require more complex equipment
and energy-demanding processes. The technological enhance-
ment and diversification is going at a fast pace, making it difficult
for relevant stakeholders to keep track of and manage the long-
term environmental impacts of successful PV innovations that
may disseminate very quickly.

The earlier the stage of development of the technology,
the harder it is to produce a realistic assessment of the environ-
mental impacts once it is implemented at commercial scale.[4]
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Innovation in photovoltaics (PV) is mostly driven by the cost per kilowatt ratio,
making it easy to overlook environmental impacts of technological enhance-
ments during early research and development stages. As PV technology devel-
opers introduce novel materials and manufacturing methods, the well-studied
environmental profile of conventional silicon-based PV may change considerably.
Herein, existing trends and hotspots across different types of emerging PV
technologies are investigated through a systematic review and meta-analysis of
life-cycle assessments (LCAs). To incorporate as many data points as possible, a
comprehensive harmonization procedure is applied, producing over 600 impact
data points for organic, perovskite (PK), dye-sensitized, tandem, silicon, and
other thin-film cells. How the panel and balance of system components affect
environmental footprints in comparable installations is also investigated and
discussed. Despite the large uncertainties and variabilities in the underlying LCA
data and models, the harmonized results show clear positive trends across the
sector. Seven potential hotspots are identified for specific PV technologies and
impact categories. The analysis offers a high-level guidance for technology
developers to avoid introducing undesired environmental trade-offs as they
advance to make PV more competitive in the energy markets.
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But an early assessment is all the more important, given the fact
that design changes are easier to make during earlier R&D
stages.[5] Stamford and Azapagic made a first step in this direc-
tion by assessing the environmental impacts of recent technolog-
ical improvements of silicon-based PV.[6] However, this was still
a retrospective assessment of technological improvements that
had already penetrated the market. It was also limited to the
currently dominating silicon-based PV systems and did not
investigate the technologies that are competing to replace them.
Chatzisideris and Laurent[7] investigated more recent technolo-
gies, yet their analysis was based on the limited quantitative
data prior to 2015 and numerous studies have been published
since then.

In this study, we adopt a more prospective and comprehensive
approach by assessing the emerging PV technologies that may
dominate in the next 10 or more years. Our aim is to discern
whether the PV industry is moving forward in terms of environ-
mental sustainability as it develops toward lower costs and/or
higher efficiencies. For this, we conduct a systematic review
and harmonization of life-cycle assessment (LCA) studies of cur-
rent state-of-the-art and emerging PV. We then apply a novel
method to conduct a statistical meta-analysis on the harmonized
data. We address five specific questions: 1) what—if any—are
the observable trends in the environmental impacts of each type
of PV technology; 2) what the variability of impact scores is
within and across different PV technologies; 3) what the effects
are, if any, of technological advances on environmental perfor-
mance; 4) how the environmental impacts compare across
technology types and across different stages of technological
maturity; and 5) which potential hotspots can be anticipated
by comparing the relative contributions to impacts from differ-
ent elements of the PV technologies. Our analysis is meant to
ultimately provide valuable guidance for PV technology develop-
ers, policy-makers, and other stakeholders so that they can factor
in environmental sustainability considerations during the early
R&D stages.

2. Experimental Section

2.1. Classification of PV Technologies

For our analysis, we classified the emerging PV technologies as
shown in Table 1, adapting definitions from Green et al.[8] and
NREL.[9] Some of these technologies were already introduced in
the market, such as thin-film cadmium telluride (CdTe). Others
have been limited to niche applications, implemented only as
pilots, or are still in the development phase. The table also shows
the advantages and disadvantages that have been reported in
various literature sources[10,11] for each technology in terms of
efficiency, cost, and environmental aspects.

2.2. Assessment Framework and Meta-Analysis Approach

LCA is a commonly used framework to assess sustainability
aspects of emerging technologies, as it provides a holistic
accounting of environmental impacts throughout a product’s
entire life cycle.[13] This holistic approach ensures that environ-
mental trade-offs are identified and quantified, and that new

technologies do not result in environmental burdens larger
than those of the incumbent technology.[14] We conducted a
systematic review and meta-analysis of LCA studies of state-
of-the-art and emerging PV by following the guiding principles
for meta-analyses contained in the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement.[15]

First, we identified potentially relevant publications since 2010
using the Web of Science tool[16] and the Google Scholar search
tool. Then we screened and filtered the results according to
the criteria described in Section 2.3. In a final step, we
harmonized the quantitative LCA results from the eligible stud-
ies, adapting and significantly extending the harmonization
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approach proposed by the NREL Life Cycle Assessment
Harmonization Project (Section 2.4).[17,18]

2.3. Identification, Screening, and Selection of Studies

To identify LCA studies of PV, we searched three different sour-
ces. First, we searched the Web of Knowledge database using the
following search strings:

(TS ¼ ((LCA OR (life cycle assessment OR (life-cycle
assessment OR (life-cycle analysis OR life cycle analysis))))
AND (solar OR (photovoltaic* OR PV)))) AND
LANGUAGE: (English) AND DOCUMENT TYPES:
(Article) Timespan: 2010-2019. Indexes: SCI-
EXPANDED, SSCI, A&HCI, ESCI.

(TI¼ ((LCA OR (life cycle assessment OR life-cycle assess-
ment)) AND (photovoltaics OR (solar AND cells))))
AND LANGUAGE: (English) AND DOCUMENT
TYPES: (Article) Timespan: 2010–2019. Indexes: SCI-
EXPANDED, SSCI, A&HCI, ESCI.

A second source was the Google Scholar search tool, where we
searched for similar search strings and compared the first 1000
hits to the results obtained in the Web of Knowledge. A third
source was the cross-references in the reviewed articles that were
not identified in the previous steps. We then screened these
results to exclude those which 1) repeated results from previous
works; 2) focused on a specific geographical implementation;
3) did not use a PV cell or panel (m2) or generation of electricity
with a PV system (kWh) as the basis for the assessment (func-
tional unit) (see Section 2.4.1); 4) did not use own data and/or
calculations for the technological system; and 5) assessed PV
cells integrated on other devices.

From the screened studies, we selected for inclusion only
those studies, in which the data provided allowed for the harmo-
nization steps described in Section 2.4. The full list of included
and excluded studies is provided in Table S1, Supporting
Information.

2.4. Harmonization

2.4.1. Functional Unit

We chose the generation of 1 kWh of electricity as a comparative
basis (i.e., functional unit in LCA[19]) for the meta-analysis. This
functional unit is used frequently in LCA studies of PV electricity
generation,[20] and accounts for technological advantages or dis-
advantages from the cell technology that translate to the ancillary
PV infrastructure. For example, cells with higher efficiencies
require less area to produce 1 kWh. Therefore, they also require
smaller infrastructures and correspondingly less materials for
the installation. However, many relevant studies reported
impacts for a unit area of cell, typically 1m2. To harmonize these
units, we calculated the equivalent area required to produce
1 kWh, as shown in Equation (1).[21]

A ¼ ε

n ⋅ r ⋅ PR ⋅ LT
(1)

where ε is the electricity output of the PV system (1 kWh), A is
the total solar panel area (m2), η is the solar panel efficiency (%),
r is the annual average solar radiation on panels (measured in
kWh year�1 m�2), PR is the performance ratio (i.e., a coefficient
that adjusts for conversion losses), and LT is the lifetime of the
PV system.

Most LCA studies for PV converge on values of PR¼ 0.75 and
solar radiation¼ 1700 kWhm�2, representative of Southern
Europe and close to the world average, respectively. The
panel efficiencies η vary depending on each cell technology.
Additional efficiency losses occur when the cells are incorporated
into the panels due to the small separations between the cells.
Therefore, whenever cell efficiencies were reported instead of
panel efficiencies, we subtracted 2% to account for these area
losses, following the approach of Louwen et al.[22]

Some studies reported electricity output in kilowatt-hour, but
for different operating conditions than the typical ones assumed
for Equation (1). Adjustments to the impact scores were made
according to the proportional difference in the parameters radia-
tion and performance ratio. O’Donoghue et al.[23] refer to this kind

Table 1. Classification and characteristics of PV technologies and cell types assessed.

PV technology Cell types Advantages Shortcomings

Silicon Single-Si; multi-Si Nontoxic; high efficiencies; long-term stability;
abundant materials

Energy intensive; high cost

Thin-film silicon Amorphous silicon (a-Si); micro-Si (μ-Si) Low cost; less materials; nontoxic Low efficiency

Thin-film chalcogenide Cadmium telluride (CdTe); CIGS, CZTS Less materials; low cost; high efficiencies Critical materials; toxicity of Cd

Dye-sensitized solar
cell (DSSC)

Ruthenium complex sensitizers;
organic dyes

Low cost; flexible; non-toxic; ease of fabrication;
ability to operate in diffuse light[12]

Temperature sensitivity of liquid
electrolyte; low efficiency[12]

OPV Polymer; single-wall carbon
nanotube (SWCNT)

Low cost; flexible; light-weight; nontoxic;
ease of fabrication; can be tailored for application

Stability (short lifetime); low efficiency

PK Lead halide, tin halide Low cost; flexible; light-weight; ease of fabrication;
high efficiencies

Stability (short lifetime); toxicity of lead

III–V Gallium arsenide (GaAs) High efficiency High cost; material scarcity; toxicity of As

Quantum dot Cadmium selenide (CdSe) High efficiency (potential) Toxicity of Cd; high cost

Tandem/hybrid Silicon HJ; III-V/Si; PK/Si; TF/TF; TF/PK High efficiency Expensive; material scarcity; toxicity of As
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of adjustment as “proportional adjustment,” where the adjusting
factor is the ratio of the parameter value in the study to the
intended harmonized parameter value. This adjustment is possi-
ble because usually more than 99% of the total impacts of renew-
able electricity generation is embedded in the infrastructure, which
is represented by the area parameter in Equation (1). Following the
method of Asdrubali et al.[24] for harmonization in renewables, we
combined the three-parameter adjustments into a single formula
to calculate the harmonized impact scores (Equation (2)).

Diharm ¼ Dipub ⋅
rpub ⋅ PRpub ⋅ LTpub

rharm ⋅ PRharm ⋅ LTharm
(2)

whereDiharm is the harmonized impact score,Dipub is the reported
impact score, rpub is the solar radiation assumed in the study,
PRpub is the performance ratio assumed in the study, LTpub is
the lifetime of the PV system in the study, rharm is the average solar
radiation in Southern Europe (1700 kWhm�2), PRharm is the aver-
age performance ratio of 75%, and LTharm is the average lifetime.
We set 30 years of lifetime for the harmonized value of all PV sys-
tems except for perovskites (PKs) and organic PV, which have
many technical barriers to long-term stability. Meng et al.[25]

and Cai et al.[26] assess that PKs may need lifetimes of 15 years
to achieve lower costs per kilowatt-hour than traditional energy
sources. However, it is not yet clear what the maximum achievable
lifetime of PKs is. Therefore, we adopt 15 years as a conservative
lifetime under the assumption that once the technology becomes
cost-competitive, the efforts to extend the related lifetimemay even
slow down further.

2.4.2. System Boundaries

We also harmonized system boundaries by ensuring that the
same life-cycle stages and comparable unit processes were con-
sidered across all technologies. For this, we divided the life-cycle
inventories of each technology into five broad life-cycle phases:
1) material extraction and assembly of PV cell, 2) material
extraction and assembly of panel components, 3) material extrac-
tion and assembly of balance-of-system (BOS) components;
4) electricity generation, and 5) end-of-life (EOL) including
decommissioning, recycling, and/or final disposal. Within these
system boundaries, the least common denominator was estab-
lished as all life-cycle stages up to electricity generation. When
necessary, unit processes were excluded and impact scores were
recalculated by subtracting the corresponding contributions. We
calculated panel (2) and BOS (3) components separately and
added them proportionally in relation to the required area of
the installation. The amount of installation required is calculated
in ecoinvent,[27] as shown in Equation (3).

Q inst ¼
1 kWh

LT ⋅ capacity ⋅ yield
(3)

Based on the ecoinvent data for a single-Si slanted-roof instal-
lation, Q inst¼ 1.158E�5 installations are required for the gener-
ation of 1 kWh. The yield is proportional to the efficiency of the
solar module; therefore, we adjustedQ inst in each case by a factor
calculated as in Equation (4) and added the corresponding
impacts for the adjusted area of installation as follows

ηsi
ηem

(4)

where ηsi is the efficiency of the single-Si solar module from
ecoinvent, i.e., 13.6%, and ηem is the efficiency of the assessed
PV technology in each case.

An exception to this proportional adjustment was the inverter,
which scales with power and not with panel area or efficiency.
Therefore, the quantity of inverter required for generating
1 kWh was kept constant across all systems. This quantity was
calculated, as shown in Equation (5).

Q i ¼
1 kWh

P ⋅ S ⋅ 365 ⋅ LT
¼ 2.2E� 5 units (5)

where Q i is the amount of inverter units required to generate
1 kWh, P is the power rating of the modeled inverter
(2.5 kW unit�1), S is the equivalent amount of sunlight hours
for the Southern European location (5 h day�1), 365 is the num-
ber of days in a year, and LT is the average lifetime of an inverter
(10 years). Individual life-cycle inventories for BOS and panel
components were updated to reflect the changes proposed by
the International Energy Agency (IEA) PVPS 2015 report.[28]

2.4.3. Impact Assessment Methods

To assess impacts in LCA, characterization factors must be used
which translate environmental emissions into different types of
impacts.[29] Different methods have been proposed to estimate
these, and they can use different indicators and units for such.
For example, the CML method[14] expresses toxicity impacts in
units of kilogram 1–4 dichlorobenzene equivalents, whereas
the USEtox method[30] uses comparative toxicity units (CTUs).
Therefore, we converted all results to the units used by the ref-
erence impact assessment methods recommended by the
European Commission in the International Reference Life
Cycle Data System (ILCD).[31] For some impact categories, con-
versions are relatively straightforward and can be achieved by a
constant factor with acceptable accuracy. In other cases, such as
toxicity and resource depletion, the modeling behind each indi-
cator is considerably different across characterization methods.
This results in conversion factors that could vary across several
orders of magnitude for different product systems, making
harmonization of impact indicators impracticable. However, we
are mainly focused on the change of environmental profile of the
emerging PV technology relative to the dominating crystalline sil-
icon systems in 2010. Therefore, we consider it appropriate to
approximate these conversion factors according to Equation (6).

IeILCD ¼ IrILCD
Irx

⋅ Iex (6)

In Equation (6), IeILCD is the impact score of the emerging
technology in harmonized ILCD units; Iex is the impact score
of the emerging technology in the units of the original method-
ology used by the study; Irx is the impact score of a reference
single-Si PV system (as modeled in ecoinvent v3.4)[27] in the
units of the impact assessment methodology used by the study;
and IrILCD is the impact score of the reference single-Si PV
system in ILCD units. The result gives a consistent idea of
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how much better or worse each system is compared with the
reference crystalline silicon system. The resulting conversion
factors for each impact category are provided in Table S2,
Supporting Information.

A flowchart describing the full identification, screening,
selection, and harmonization process is shown in Figure S1,
Supporting Information.

2.5. Statistical Analysis

To discern trends in time, we used linear regression models and
Pearson correlation coefficients for impact scores as a function of
time (i.e., year in which technology developers first describe the
PV cell design in literature). Louwen et al.[32] investigated expo-
nential learning curves to assess the greenhouse gas emissions of
silicon-based PV over a period of 40 years. However, there is still
scant supporting evidence for the existence of such curves for the
data at hand in this study. Furthermore, our interest is not to
predict but rather to observe whether the trends exist and if
so, whether they are positive or negative.

To investigate the effects of technological development on the
environmental performance of PV systems, we used a random
effects model.[33,34] Random effects models commonly applied
in meta-analyses require the definition of an experimental group
(i.e., the population of individuals exposed to a certain treatment)
and a control group (i.e., the population of individuals not
exposed to the treatment). Effects are, then, estimated comparing
the outcome of the treatment across studies using effect size
metrics, such as odds ratios, correlation coefficients, and stan-
dardized mean differences (SMDs).[33,34] We framed our case
such that the commercially established single and multicrystal-
line PV systems served as a pseudo-control group, using the har-
monized data compiled from the meta-analysis by Hsu et al. of
the National Renewable Energy Laboratory and the Brookhaven
National Laboratory.[18] The data in these studies refer to
commercial PV systems assessed in 2000–2008. We defined
as pseudo-experimental groups the emerging PV techno-
logies assessed in 2010–2019 (see Table S1, Supporting
Information). We considered the diverse technological enhance-
ments as the treatments performed on the experimental groups.
The effects of the technological enhancements were interpreted
as the changes in the SMDs[35] in impact scores. The SMD is
equivalent to the difference in the mean score between the
emerging PV technology and the reference PV system, divided
by the standard deviation of the scores. To get a sufficiently large
population (N) for each group, we grouped results by PV technol-
ogy type, rather than by study. This is admittedly a departure from
convention in meta-analysis, but is—to an extent—reasonable
insofar as the harmonization is comprehensive enough.

3. Results and Discussion

3.1. LCA Studies and Data Points Identified and Selected

A total of 1024 potential LCA studies were identified in the Web
of Knowledge database and Google Scholar. The screening
process resulted in 85 studies, of which 40 resulted eligible
for the quantitative synthesis. These 40 studies produced

682 data points (LCA impact scores), distributed as shown
in Figure 1.

The studies were produced by 28 lead authors and published
in 18 different peer-reviewed journals. As shown in Figure 2, the
majority of the studies were related to PKs and thin films. The
eligible contributions in 2018 doubled those from the next most
productive year (2011).

3.2. Trends per Technology Type

Figure 3 shows the impact scores for each of the ILCD impact
categories classified by PV technology type and maturity, as a
function of the year in which the cell design was introduced.
A first important insight can be obtained from looking at the
Y scales, which provide both maximum and minimum values
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Figure 1. Number of impact indicators considered for different PV tech-
nologies, 2010–2019.
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as well as an idea of the variability of the scores reported. Most
impact scores are within an order of magnitude despite differ-
ences in modeling and cell designs. It can be observed that there
is no clear trend in time, and the steeper slopes are only present
for technology and impact-type combinations with few data
points. Of the impact cell–type subgroups with more than ten
data points, only four trends with strong correlations
(r¼>0.5 or r¼<�0.5) were detected. Tandem cells showed a
strong positive correlation (increasing impact) with respect to
resource depletion and photochemical oxidation and a strong
negative correlation with respect to ozone depletion. The former
may be explained by the increased use of transparent conductive

oxides in tandem cell manufacturing. Full results of the regres-
sionmodeling are provided in Table S3, Supporting Information.

For climate change impacts, the scores appear to be stabilizing
toward <0.03 kg CO2 eq. Here, thin-film silicon and chalcoge-
nides appear to perform remarkably well, most likely due to a
good balance between conversion efficiency, low material
requirements, and replacement of energy-intensive silicon.
A predominance of green data points (PKs) can be observed
on top, suggesting an overall larger footprint for this technology
type. In contrast, the state-of-the-art versions of silicon-based
technologies are among the most competitive from an environ-
mental perspective.

Figure 3. Harmonized LCA impact scores of PV technologies as a function of time. CTUe, freshwater ecotoxicity; CTUh,c, human toxicity—cancer effects;
CTUh,nc, human toxicity—noncancer effects; kg CFC-11 eq, ozone depletion; kg CO2 eq, climate change; kg N eq, marine eutrophication; kg NMVOC eq,
photochemical oxidation; kg P eq, freshwater eutrophication; kg PM2.5 eq, particulate matter; kg Sb eq, mineral resource depletion; kg U235 eq, ionising
radiation; m3 water, water use; MJ, cumulative energy demand; mol Hþ eq, acidification; and mol N eq, terrestrial eutrophication.
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3.3. Variability of Impact Scores

When compared with a single-Si rooftop PV system as a refer-
ence (as modeled in ecoinvent v3.4[27]), the relative impacts of
all technologies aggregated fell within a factor of 2 (where single
Si¼ 1; see Figure 4). The only exception to this was the category
of marine eutrophication. This holds for the 75% confidence
interval in 13 out of 14 ILCD impact categories when outliers
were removed (outlier values are considered as any values over
1.5 times the interquartile range over the 75th percentile or any
values under 1.5 times the interquartile range under the 25th
percentile). None of the medians exceed that of the reference sys-
tem, and ten categories fall under 1.5 for a 75% confidence inter-
val. Considering that most of the emerging PV systems were
assessed based on the lab-scale designs that do not represent
optimized industrial-scale processes, the landscape looks positive
as long as upscaling to the industrial scale is reflected in further
material and energy optimization.

A closer look at the distribution of scores per technology type
is shown in Figure 5, for the impact categories with most data
points. PKs show the largest variability. An interesting thing to
note is the apparently lognormal shape of the distributions.
In the case of freshwater eutrophication, the normal-shaped
curved is on a logarithmic x-axis, which also suggests a lognor-
mal distribution for this category. Lognormal distributions are
often found in the probabilistic impact scores of individual
systems, but we had no reason to assume the same type of
distribution for meta-analyses across different systems. We used
the geometric means and standard deviations to describe the
populations, which are better suited for skewed distributions
(Table 2).[36]

3.4. Effects of Technological Enhancement on Environmental
Impacts

Technological innovations appear to have had positive results on
climate change impact scores, as can be seen from the random
effects model results shown in Figure 6. The heterogeneity is,
however, still quite large and the low p-value suggests that there
may be underlying factors. This may be attributed to the differ-
ences in materials, manufacturing processes, or efficiencies of
each technology type, but it could also be attributed to modeling
differences that were not sufficiently corrected via the harmoni-
zation procedure.

We further subgrouped the data by cell-conversion efficiency
and disaggregated by subtechnology types (see Figure S2,
Supporting Information). The results suggest that an increased
cell-conversion efficiency does not necessarily determine a statis-
tically significant reduction in climate change impacts measured
using SMD. However, the subgrouping did not reduce the inher-
ent heterogeneity of the data. The results may suggest that either
additional underlying factors (e.g., material choice, manufacturing
processes, and cost) are better suited than efficiency to represent
the relationship between technological enhancements and climate
change impacts or that the strive for reduced efficiency is not
reflected in improved environmental performance of the PV sec-
tor. If the latter is the case, PV technologies can still bring about
environmental benefits by replacing other types of energy sources
(e.g., fossil fuel based), which are not considered in this study.

3.5. Contribution and Hotspots Analysis

3.5.1. Light-Absorbing Layers and Cells

The focus of most LCA studies of emerging PV technologies is on
innovations in the light-absorbing layers, whether in terms of
their materials or configurations. Each type of absorbing layer pla-
ces some additional requirements on the ancillary components of
the cell (e.g., organic photovoltaic [OPV] requires encapsulation
and PKs are deposited on a transparent conductive oxide).
Figure 7 shows the average contributions of the modules to each
impact category for each PV technology. It can be seen that for
PKs and tandem technologies, the main contributions come from
the cell, rather than from the panel and BOS components.

3.5.2. From Cells to Panels

Based on the 2015 inventory data from IEA PVPS,[28] panel con-
tributions for a single-Si roof-mounted PV system can range
between 4% to water depletion, 11% to climate change, and
28% to mineral resource depletion. Within the panel, aluminum
and solar glass typically account for over 50% of the contributions
in most impact categories, although small amounts of copper
weigh heavily on the toxicity categories. Therefore, cells that
may require less or no glass and aluminum highly benefit from
these avoided emissions in certain installations. Examples of
these are roll-to-roll manufactured OPV, PKs, dye-sensitized
cells, and thin-film chalcogenides. This is an important outcome
because it implies that technologically enhanced PV cells have a
good opportunity to offset environmental trade-offs if the new

Figure 4. Relative LCA impact scores compared with a reference single-Si
PV rooftop system as modeled in ecoinvent v3.4[27] (single-Si impact
score¼ 1, indicated by the red dotted line).
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Table 2. Statistics for impact scores, all PV technologies.

Impact category Units Geometric mean Geometric standard deviation Min Max n

Freshwater ecotoxicity CTUe 4.91Eþ00 6.472367 1.73E�03 6.83Eþ01 62

Human toxicity, cancer effects CTUh,c 2.09E�08 15.339903 1.97E�09 1.33E�05 39

Human toxicity, noncancer effects CTUh,nc 9.66E�08 2.283539 6.15E�09 1.49E�06 48

Ionising radiation kBq U235 eq 6.33E�03 7.209188 9.34E�04 2.14Eþ00 14

Ozone depletion kg CFC-11 eq 2.88E�09 4.331922 4.18E�10 2.30E�07 40

Climate change kg CO2 eq 4.20E�02 3.085995 4.34E�03 7.74E�01 95

Marine eutrophication kg N eq 6.70E�04 89.11475 2.48E�05 2.76Eþ00 14

Photochemical oxidation kg NMVOC eq 3.16E�04 7.437551 4.24E�05 8.28E�01 34

Freshwater eutrophication kg P eq 8.21E�05 4.315235 1.93E�06 1.50E�02 55

Particulate matter kg PM2.5 eq 4.30E�05 2.413509 1.04E�05 2.07E�04 27

Resource depletion kg Sb eq 1.63E�05 3.9506 1.89E�08 1.79E�04 46

Water depletion m3 water 2.03E�02 4.287818 8.68E�03 9.92E�01 15

Terrestrial eutrophication mol N eq 7.25E�04 1.597175 3.51E�04 1.12E�03 5

Acidification mol Hþ eq 4.10E�04 2.667304 4.65E�05 3.76E�03 45

Figure 5. Histogram of harmonized impact scores categorized by PV technology type. The black dotted line indicates the score for the reference single-Si
rooftop PV system.[27]

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2020, 1901064 1901064 (8 of 11) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.entechnol.de


cell design favors less material-intensive panels. The need for
less panel materials can result from lighter cells, allowing lami-
nation or lighter paneling, and/or from higher cell efficiencies
requiring less panel area per kilowatt-hour.

3.5.3. From Panels to PV Installations

The BOS is also a main contributor and is in a large part inde-
pendent of cell design. Particularly the inverter, which is
required equally for all systems independent of cell efficiency,
contributes on average 11% to impact categories, with 32% to
mineral resource depletion and 29% to human toxicity, non-
cancer effects for a reference single-Si roof-mounted system.
The remainder of the installation is composed of mounting sys-
tems and cabling which contribute on average 33% to all impact
categories, with 71% contribution to freshwater ecotoxicity, 37%
to human toxicity and cancer effects, and 18% to climate change.
Here, the key contributions come from aluminum and copper,
where aluminum from the mounting system represents 87% of
the climate change contribution and copper from the electric
installation 97% of the contribution to freshwater ecotoxicity.

3.5.4. Hotspots in the Emerging PV Landscape

Figure 8 shows a radar plot with relative impacts of the different
types of PV cells, where 100% corresponds to the impact score

Figure 6. Random effects model results for climate change impact.
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Figure 7. Average relative contributions of PV cells as compared with the corresponding PV system.

Figure 8. Relative ILCD impact scores for different PV technologies,
compared with a reference single-Si roof-mounted PV system as modeled
in ecoinvent v3.4 (¼100%). The plot is truncated at 400% for visualization
purposes.
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for a reference single-Si roof-mounted system as modeled in
ecoinvent v3.4.[27] For each type of PV cell, we have used the
geometric mean impact score, following the indications of
Section 3.3. PKs dominate the plot and exceed the reference sin-
gle-Si system by factors of 2 and more in four impact categories.
These potentially important hotspots are shown in Table 3, along
with their possible sources.

It is important to highlight that the results discussed earlier
represent the impacts of the PV technologies in comparable
applications, i.e., roof-mounted installations. However, several
of these technologies are finding alternative applications and
may end up creating their specific market niches. Some of these
technologies can be embedded into other systems (e.g., building
integrated or flexible cells integrated on consumer products).
From an LCA perspective, this means that the assessed func-
tional unit would change, and this can considerably change
the calculation of the life-cycle impact scores of the technologies.

4. Conclusions

A comprehensive harmonization effort combined with diverse
statistical analyses allowed us to answer important questions
about the direction the PV sector is taking in terms of sustain-
ability. This was possible despite the large underlying uncertain-
ties in predicting the future evolution of immature technologies,
and the wide array of modeling choices across LCA studies,
which can greatly magnify the variabilities in the harmonized
results. From an overall environmental perspective, thin-film

silicon and dye-sensitized cells presented a considerable lead, fol-
lowed by thin-film chalcogenide, organic, and silicon. As many of
the assessments are still based on early design concepts, the
results we presented should not be used as arguments to hinder
further research on specific technologies. Rather, they may be
used constructively to highlight research pathways that can result
in more environmentally competitive designs. Emerging con-
cepts that are lagging in this respect can address their shortcom-
ings by aiming to reach higher efficiencies, longer lifetimes,
substituting novel materials, and/or reducing the energy inten-
sive of their manufacturing processes.

This meta-analysis investigated environmental life-cycle
impacts based on the LCA method. LCA aggregates environmen-
tal emissions and impacts in large production and consumption
systems that occur in many different places and times. This tem-
poral and spatial integration is helpful to compare product sys-
tems based on their total life-cycle emissions, but LCA results do
not necessarily reflect actual risk at a specific location or time.
Risk assessment can provide an idea of actual risk by combining
release, environmental fate, and exposure to emissions and com-
paring them to thresholds on which adverse effects occur.[37]

Both frameworks are complementary and necessary.[13,38] We
believe future studies incorporating risk assessment results into
a meta-analyses framework like the one developed in this study
can provide a comprehensive and valuable tool for guiding
research and policy in the PV sector.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Table 3. Key potential environmental hotspots in emerging PV
technologies, compared with a reference single-Si roof-mounted PV
system.

PV technology Impact category Comparative hotspots

PKs Photochemical oxidation Isopropanol emitted in blocking layer

Fluorine-doped tin oxide (FTO) glass

Gold layer

Freshwater eutrophication FTO glass

Isopropanol emitted in blocking layer

Gold layer

Waste streams

Particulate matter FTO glass

PK layer

Gold layer

Ozone depletion FTO glass

Gold layer

PK layer

Marine eutrophication Dimethylformamide (DMF)
in solution-deposited PK

FTO glass

Human toxicity,
cancer effects

Methylammonium iodide (MAI)

Tin

Tandem Human toxicity,
cancer effects

DMF and isopropanol
solvents in PK/Si
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